Step of Proof: linorder_lt_neg
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
linorder
lt
neg
:
T
:Type,
R
:(
T
T
).
(
x
,
y
:
T
. Dec(
R
(
x
,
y
)))
Linorder(
T
;
x
,
y
.
R
(
x
,
y
))
(
a
,
b
:
T
. (
strict_part(
x
,
y
.
R
(
x
,
y
);
a
;
b
))
R
(
b
,
a
))
latex
by ((((((RepD)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
)
CollapseTHEN (ARepD ["compound";"basic"]))
)
CollapseTHEN (
C
Unfold `strict_part` 0))
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
R
:
T
T
C1:
3.
x
,
y
:
T
. Dec(
R
(
x
,
y
))
C1:
4.
a
:
T
.
R
(
a
,
a
)
C1:
5.
a
,
b
,
c
:
T
.
R
(
a
,
b
)
R
(
b
,
c
)
R
(
a
,
c
)
C1:
6.
x
,
y
:
T
.
R
(
x
,
y
)
R
(
y
,
x
)
(
x
=
y
)
C1:
7.
x
,
y
:
T
.
R
(
x
,
y
)
R
(
y
,
x
)
C1:
8.
a
:
T
C1:
9.
b
:
T
C1:
(
(
R
(
a
,
b
) & (
R
(
b
,
a
))))
R
(
b
,
a
)
C
.
Definitions
x
,
y
.
t
(
x
;
y
)
,
t
T
,
strict_part(
x
,
y
.
R
(
x
;
y
);
a
;
b
)
,
x
(
s1
,
s2
)
,
P
Q
,
,
x
:
A
.
B
(
x
)
,
AntiSym(
T
;
x
,
y
.
R
(
x
;
y
))
,
Trans(
T
;
x
,
y
.
E
(
x
;
y
))
,
Refl(
T
;
x
,
y
.
E
(
x
;
y
))
,
Connex(
T
;
x
,
y
.
R
(
x
;
y
))
,
Order(
T
;
x
,
y
.
R
(
x
;
y
))
,
P
&
Q
,
Linorder(
T
;
x
,
y
.
R
(
x
;
y
))
Lemmas
decidable
wf
,
linorder
wf
origin